Статья из сайта petrovlam.ru
Автор: Петров В. М.
Введена 27.05.2008
Последнее обновление: Дополнена: 19.12.2009

 

Комментарии к статье «Одессита (на правах Автора)

«Безопорное движение корабля-шара»

(поиск – по ключевым словам

«Безопорное движение корабля-шара»)

 

      Аннотация:   Здесь приведены некоторые мои рассуждения о статье, посвящённой вопросам использования вращающегося шара в качестве космического корабля.

 

      [Я позволил себе лёгкую доработку (редактирование) текста исходной статьи, исправление в ней явных ошибок и выделение некоторых мест жирным шрифтом].

 

      У меня есть идея передвижения по космосу без реактивных двигателей и даже, если вам это надо, то и без ничего вообще, одной только Вашей силой.

 

      Представим, что человек находится в космосе внутри шара. Если человек оттолкнётся от одной стороны шара, то человек полетит в одну сторону (к центру шара), а сам шар начнёт двигаться в противоположную сторону.

      После подлёта человека к противоположной стенке и шар, и человек остановятся, пролетев по закону сохранения импульса расстояние, равное точно радиусу шара. Чтобы вернуться обратно, человек должен снова оттолкнуться и полететь обратно к центру. Но тогда шар вернётся ровно в то место, где и был. И окажется, что наш опыт был проделан безрезультатно.

      Поэтому меняем последний прыжок на другое действие, а именно – на вращение шара.

      Для этого человек должен идти по его внутренней стенке. Шар при этом начнёт вращаться. Пройдя по стенке шара полный круг, человек останавливается, оказавшись в той точке, от которой он отпрыгнул. И, если теперь человек отпрыгнет снова, то шар полетит дальше по линии выбранного направления и в конце второго прыжка шар окажется уже на целый диаметр дальше от исходного места.

       Теперь представим, что шар вращается с такой скоростью, что пока человек летит в нём после прыжка к противоположной стенке, шар поворачивается ровно на пол-оборота (180º), и человек развернётся  вместе с ним тоже на 180º.

      Движение шара не остановилось, а, наоборот, скорость его увеличилась в два раза.

      Снова можно прыгать. Скорость шара дополнительно  увеличится.

      И так до бесконечности. Какая там скорость света! Прыгаем и – всё!

      Какой движок можно придумать на этой основе? Идея у меня есть. Например, пусть будет прыгать не один человек (устройство), а много, расположенных по окружности шара, и прыгать они будут в тот момент времени, когда под ними в пространстве оказывается линия выбранного направления. Чем меньше время толчка, тем лучше.

 

ТЕПЕРЬ – КОММЕНТАРИИ

 

1.   Если внутри шара, свободно парящего в космическом пространстве, человек оттолкнётся от стенки и прыгнет, то во время его полёта до противоположной стенки

шар действительно будет лететь в противоположную сторону.

      Если (для упрощения) принять массу прыгающего человека равной массе шара, то можно согласиться с тем, что за время, необходимое человеку для перелёта от одной стенки до противоположной, шар действительно переместится на расстояние, равное собственному радиусу.

      Можно согласиться также и с тем, что в момент касания человеком противоположной стенки вся система (шар плюс человек) остановится.

 

2.   И с этого момента начинается первый ФОКУС!

      Человек, долетев до стенки и коснувшись её, не только остановит перемещение шара, но и сам тут же отскочит от этой стенки и полетит назад в исходную позицию! Ведь шар-то висит в космическом пространстве, где для человека и для всего, что его окружает, отсутствует сила тяжести.

      И пока человек летит (возвращается) обратно, шар тоже возвращается назад.

      В момент подлёта к отправной стенке вся система благополучно вернётся «на круги своя»!

      Поэтому будем считать, что человек после первого прыжка не просто долетел до противоположной стенки, но и ЗАЦЕПИЛСЯ за неё.

      В этом случае шар ДЕЙСТВИТЕЛЬНО окажется перемещённым на расстояние, равное своему радиусу.

      Беда в том, что теперь человеку придётся возвращаться назад! А это означает и для шара  возврат назад на расстояние, опять же равное радиусу.

      Суммарно, после туда-сюдашного полёта шар вместе с человеком останется на исходной позиции. И можно снова прыгать!

      Зачем же тогда прыгать?

      Да просто для удовольствия!

 

3.   Автор считает, что вместо прыжка в обратном направлении можно будет идти по стенке шара в точку, из которой был совершён прыжок.

 

      Но именно с этого момента начинаются заблуждения автора.

 

-     Человек, «шагающий» по стенке шара, действительно будет толкать шар в направлении, обратном своему движению. Но шар НЕ БУДЕТ вращаться только от перемещения человека по его поверхности.

      Ведь для вращения необходимо приложить к телу МОМЕНТ вращения. 

      Такой момент может образоваться в двух случаях: либо сила будет приложена на некотором расстоянии от точки опоры (от оси вращения), либо к противоположной стороне тела тоже будет приложена сила, по величине не обязательно равная первой, но имеющая ОБЯЗАТЕЛЬНО противоположное направление.

      Для шара, свободно парящего в космическом пространстве, ось вращения отсутствует!

      На крайняк – необходимо приложить пару сил, то есть вместо одного человека шагать синхронно «гуськом» должны, как минимум, двое по противоположным стенкам. Но и в этом случае полезно пролететь сможет только один из двух и только один раз. А затем ему всё равно потребуется каким-либо способом вернуться в исходную позицию. И тем самым вернуть корабль в исходную точку пространства.

 

ПРИМЕЧАНИЕ

      Вообще говоря, в невесомости термин «шагать» звучит как-то непривычно. Будем считать, что человек каким-то образом имеет со стенкой надёжное сцепление.

 

-     «Шагая» по стенке, человек СМОЖЕТ вернуться в нужную ему точку шара. Фокус состоит в том, что ШАР тоже ВЕРНЁТСЯ при этом в свою исходную позицию. И совершенно неважно сколько таких человеков шагает по стенке: один или синхронно с ним по противоположной стенке шагает ещё один. При этом совершенно неважен и маршрут, по которому возвращается человек (или возвращаются  человеки)!

 

-     В результате – сколько не ходи по стенкам, всё вернётся на круги своя.

      И никаких вам «уже на целый диаметр». И никакого поступательного движения «одной только Вашей силой».

 

4.   Можно рассмотреть вариант, когда человек вместо шагания по стенке возвращается в исходную позицию, НЕ отталкиваясь от стенки шара. Это можно выполнить, например, при помощи заплечного реактивного двигателя. В этом случае человек попадёт в исходную точку, встретившись со стенкой и толкнув при такой встрече шар вперёд. Но суммарно шар всё равно останется на месте, так как вся масса продуктов выхлопа из реактивного сопла доберётся до противоположной стенки (хотя бы и косвенно, например, растворившись в атмосфере внутри шара) и, нейтрализуя толчок человека, вернёт шар назад.

 

      И опять - никакого (на этом этапе) поступательного движения.

 

ПРИМЕЧАНИЯ

      1.   Не совсем ясно теперь, а что делать с выхлопными продуктами?

      Впрочем, это - тема для самостоятельного обсуждения. Ведь плавают же подводные лодки, оснащённые двигателями внутреннего сгорания!

      2.   Кстати, при наличии реактивного заплечного движка отпадает необходимость и во вращении шара.

 

5.   Можно рассмотреть вариант, в котором не человек своёй ходьбой пробует решить не решаемую задачу с вращением шара, а шар вращается при помощи специальных внешних (или внутренних) устройств, оставляя человека у стенки в точке его прибытия после первого прыжка.

 

ПРИМЕЧАНИЕ

      Можно, к примеру, закрепить на стенке шара электромотор и включить его. Шар в этой ситуации будет вращаться противоположно вращению большого ротора.

 

Тут тоже возникают варианты.

 

-     Первый. Человек просто ждёт, кода вращающийся шар «довезёт» его до нужной позиции.

-     Второй. Человек ещё и «летит» к исходной позиции, оттолкнувшись от стенки, во вращающемся шаре.

 

      В первом варианте человек становится дебалансом. Для внешнего (по отношению к шару) наблюдателя расстояние, на которое будет перенесён человек по направлению положительного движения шара, окажется абсолютно таким же, на которое переместится центр шара в обратном направлении. Относительно шара человек переместится на расстояние, равное диаметру шара. Для внешнего наблюдателя – на один радиус. Так что по линии выбранного направления система «шар-человек» всё равно вернётся в исходную точку.

      А ещё – весь корабль будет улетать вбок их-за действия центробежной силы, генерируемой человеком-дебалансом.

 

ПРИМЕЧАНИЕ

      Для нейтрализации этой неприятности без второго человека, имеющего такую же массу, похоже, обойтись уж точно не получится.

      Но самое интересное здесь состоит именно в том, что можно НЕ бороться с этой неприятностью, а считать выбранным направлением именно движение ВБОК! В этом случае человек будет прыгать ПЕРПЕНДИКУЛЯРНО движению вращающегося корабля.

      А движение такое ДЕЙСТВИТЕЛЬНО должно быть!

      Только эта идея уже не связана с обсуждаемой статьёй Автора.

 

      Во втором случае (с точки зрения внешнего наблюдателя) человек, оттолкнувшийся от стенки шара, действительно будет лететь к его центру (при условии, что сила толчка будет превышать центробежную силу, генерируемую человеком, вращающимся вокруг центра шара).

      И тут опять возникают несколько интересных ситуаций:

      -    Во-первых, пока человек не отпрыгнул, он в роли дебаланса заставляет корабль вращаться вокруг его центра масс.

      -    Во-вторых, после отпрыгивания человека от стенки прекращается передача корпусу шара генерируемой человеком центробежной силы. Но движение шара, вызванное наличием начального дебаланса,  будет продолжаться в направлении последнего вектора контактной центробежной силы.

      -    В-третьих, человек, долетев до противоположной (относительно внешнего наблюдателя) стенки, немедленно начнёт генерировать центробежную силу, в результате чего полностью скомпенсируется импульс, полученный коряблём в момент отскока.

 

      В итоге - опять никакого поступательного движения.

     

6.   Не может быть и речи об увеличении скорости шара после очередного прыжка, потому что шар ВООБЩЕ не полетит.

 

7.   Ничем не поможет поворот шара на 180º. Человек действительно попадёт в точку, от которой отскочил. Но это всего лишь точка на стенке шара, а не точка во внешнем пространстве.

 

8.   Далее, отталкиваясь от идеи Автора, предлагаю одно из схемотехнических решений движителя (рисунок 1).

 

      Отличием предлагаемого движителя от Авторской идеи является использование не сил отталкивания, а центробежных сил, генерируемых снарядами (красный цвет), вращающимися по кругу в обойме (серый цвет), загруженной только в одной своей половине. В параллельной обойме вращается аналогичная обойма с такой же угловой скоростью, но в противоположном направлении.

 

ПРИМЕЧАНИЕ

      По принципу действия движитель очень похож на движитель, описанный в статье ЧАСТЬ 8 раздела ЦЕНТРОБЕЖНЫЕ.

 

Рис. 1

 

      В горизонтальной позиции левые (по схеме) снаряды отстреливаются и по каналам влетают в свободные ячейки у противоположной стенки. После отстрела обе обоймы поворачиваются на один шаг навстречу друг другу для подачи к отстрелу новых снарядов.

      Амплитуда тяговой силы имеет только положительное направление.

      Пульсация даже при одной паре зеркальных обойм ожидается невысокой, но ни что не мешает сделать так, что одновременно летят несколько снарядов, находящихся в разных стадиях. Тогда и пульсации поступательного перемещения мобиля должны значительно уменьшиться, а его итоговая скорость – увеличиться.

 

ДОПОЛНЕНИЕ   19.12.09

 

      Предложенный вариант движителя требует, чтобы снаряды-грузы, вращающиеся в кассете, в ОБЯЗАТНЛЬНОМ порядке имели непрерывный контакт со стенкой кассеты (см. статью ОТЧЁТ 2 о НИОКР). Например, прилетевший снаряд примагничивается к стенке, а отлетающий снаряд – предварительно отмагничивается.


Просмотров: 3221

Комментарии к статье:


Ваще сообщение:
 

 

Добавить комментарий

[B] [I] [u] [S] [2] [2]       [TAB] [∑] [∓] [≈] [≠] [≤] [≥] [π] [×] [√]       [RED] [GRE] [BLU]

[α] [β] [Γ] [γ] [Σ] [σ] [Δ] [δ] [Ω] [ω] [μ] [Λ] [λ]